top of page

1.Grant, W. B. and Giovannucci, E. The possible roles of solar ultraviolet-B radiation and vitamin D in reducing case-fatality rates from the 1918-1919 influenza pandemic in the United States., 215-219 (2009).

2.(Paris, Institut national d’études démographiques, 1954), 432-438.

  1. Willmott, C. J., Matsuura, K. Terrestrial Air Temperature and Precipitation: Monthly and Annual Time Series http://climate.geog.udel.edu/~climate/html_pages/README.ghcn_ts2.html (2001).

4.Ansart, S. et al. Mortality burden of the 1918-1919 influenza pandemic in Europe., 99-106 (2006).

5.Humphries, M. O. Paths of infection: The first World War and the origins of the 1918 influenza pandemic,, 55-81 (2013).

6.A hypothesis: the conjunction of soldiers, gas, pigs, ducks, geese and horses in Northern France during the Great War provided the conditions for the emergence of the “Spanish” influenza pandemic of 1918-1919., 940-945 (2005).

7.Erkoreka, A. Origins of the Spanish influenza pandemic (1918-1920) and its relation to the First World War., 190-194 (2009).

8.Hussey, J., The Flanders battleground and the weather in 1917, in P.H. Liddle, ed.,(London: Leo Cooper, 1997), pp. 140-158.

  1. Savouret, E. et al., Au temps météorologique de la Grande Guerre. Approche séquentielle des périodes contraignantes dans les tranchées sur le front de la Marne et de la Meuse, 1914-1918. Climatologie 8, 59-77 (2011).

10.Barbante, Schwikowski et al.,Historical record of European emissions of heavy metals to the atmosphere since the 1650s from Alpine snow/ice cores drilled near Monte Rosa., 4585-4090(2004).

11.More, A. et al., Next generation ice core technology reveals true natural levels of lead (Pb) in the atmosphere: insights from the Black Death., 211-219 (2017).

12.More, A. et al., The role of historical context in understanding past climate, pollution and health data in trans-disciplinary studies., 162-170 (2018).

13.Döscher, A. et al., A 130 years deposition record of sulfare, nitrate and chloride from a high-alpine glacier., 603-609 (1995).

14.Bohleber, P. et al. Temperature and mineral dust variability recorded in two low accumulation Alpine ice cores over the last millennium., 21-27 (2018).

15.Tucker, M. et al. Moving in the Anthropocene: Global reductions in terrestrial mammalian movements., 466-469 (2018).

16.Borden, M. At the Somme: The Song of the Mud.,, 275 (1917).

  1. Attal, R. & Rolland, D., Ambleny, le temps d’une guerre. Journal d’Onézime Hénin (1914-1918). (Soissons : Societé archéologique, historique et scientifique de Soissons, 1993), p. 158.

18.Chickering, R.. (Cambridge: Cambridge University Press, 2004), p. 141.

19.Barton, P. Doyle, P., Vandewalle, J.(Montreal: McGill – Queen’s University Press, 2007), pp. 17, 76.

20.Lloyd, N.,(London: Penguin, 2017).

21.Reid, A. H, Fanning, T.G., Hultin, J.V., Tautenberger, J.K. Origin and Evolution of the 1918 “Spanish” influenza virus hemagglutinin gene.96: 1651-1656 (1999).

22.A Reanalysis of the 1921-30 Atlantic Hurricane Database., 865-885 (2012).

23.Viboud, C. et al. Association of influenza epidemics with global climate variability., 1059-1059 (2004).

24.Saunders-Hastings, P. R. & Krewski, D. Reviewing the history of pandemic influenza: Understanding patterns of emergence and transmission., 1-19 (2016).

25.Flexibility of continental navigation and migration in European mallards., e72629 (2013).

26.Kleyheeg, E. et al. A comprehensive model for the quantitative estimation of seed dispersal by migratory mallards., 40 (2019).

27.Tolf, C. et al. Birds and Viruses at Crossroad – Surveillance of Influenza A Virus in Portuguese Waterfowl., e49002 (2012).

28.Morphological and biochemical characteristics of avian faecal droppings and their impact on survival of avian influenza virus., 99-106 (2018).

29.Vittecoq, M. et al. Modeling the spread of avian influenza viruses in aquatic reservoirs: A novel hydrodynamic approach applied to the Rhône delta (southern France)., 787-800 (2017).

30.Carter, R. W. & Sanford, J. C. A new look at an old virus: patterns of mutation accumulation in the human H1N1 influenza virus since 1918., 42 (2012).

31.Ecology of avian influenza viruses in a changing world., 113-128, (2011).

32.Breban, R. et al. The role of environmental transmission in recurrent avian influenza epidemics., e1000346 (2009).

33.Bengtsson, D. et al. Does influenza A virus infection affect movement behavior during stopover in its wild reservoir host?, 150633 (2016).

34.Worobey, M. et al. Genesis and pathogenesis of the 1918 pandemic H1N1 influenza A virus., 8107-8112 (2014).

35.Smith, G. D. et al., Dating the emergence of pandemic influenza viruses., 11709-11712 (2009).

36.Belser, J. A. & Tumpey, T.M. The 1918 Flu, 100 years later., 255 (2019).

37.Experimental infection of pigs with the human 1918 pandemic influenza virus., 4287-4296 (2009).

38.Reid, A. H., Tautenberger, J. K. and Fanning, T. Evidence of an absence: the genetic origins of the 1918 pandemic influenza virus., 909-914 (2004).

39.Tang, Comparison of pandemic (H1N1) 2009 and seasonal influenza viral loads, Singapore., 287-290 (2009)

40.Avian influenza virus in water: infectivity is dependent on pH, salinity and temperature., 20-26 (2009)

41.Lowen, A. and Steel, J. Roles of humidity and temperature in shaping influenza seasonality., 7692 (2009).

42.Foxman, E. F. et al., Temperature dependent innate defense against the common cold virus limits viral replication at warm temperature in mouse airway cells., 827-832 (2015).

43.Foxman, E. F. et al.,

44.Iwasaki, A. et al., Early local immune defenses in the respiratory tract., 17-20 (2017).

45.Meissner, H. C. Viral bronchiolitis in children., 62-72 (2016).

46.Klugman et al. Pneumococcal pneumonia and influenza: a deadly combination., c9-c14 (2009).

47.Morens et al., Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: implications for pandemic influenza preparedness., 1-9 (2008).

48.

bottom of page